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The paper presents so-called distortion approach to problems of structural
(re)modelling and sensitivity analysis of linear systems under predetermined load.
The load may be static or dynamic. In the first case the so-called Virtual Dis-
tortion Method (VDM) is used, while for dynamics the so-called Impulse Virtual
Distortion Method (IVDM) have been developed, recently. All formulae are for
structures composed of various finite elements. However, the very important ques-
tion of distortion states in finite element is briefly discussed here for the case of
2D-beam finite element.
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1. Introduction

The Virtual Distortion Method (VDM) and its application to structural
analysis, design and control of static structures were comprehensively de-
scribed by Holnicki-Szulc [1], and Holnicki-Szulc and Gierlinski [2]. One of
the preliminary descriptions which presents the new, impulse version of the
method, i.e., the dedicated for dynamics of small vibrations Impulse Vir-
tual Distortion Method (IVDM) may be found in paper by Holnicki-Szulc
and Zieliński [3]. Thorough and complete description of the method gave
Zieliński in [4]. In this work some new aspects of the classical VDM together
with the description of object-oriented implementation of both VDM and
IVDM were given.

This paper briefly presents some basic formulae and ideas of the distortion
methods. Eventually, Sec. 7 brings a verification of some IVDM algorithms:
the Impulse VDM is applied there to the damage identification problem based
on the analysis of elastic wave propagation.
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2. Some basic notions and ideas

Let us introduce briefly the following notions:

• the virtual distortion – the initial strain introduced in a structural
element (its effect is analogous to the result of non-homogenous heating
or geometric imperfection);

• the unit-distortion – the virtual distortion that would cause a unit-
strain (of some kind) in an unconstrained element;

• the compensating load – the self-equilibrated load applied to the nodes
of an element equivalent to the unit-distortion effect.

It is important to notice here that the virtual distortions, ε̂i, are to be used
to model modifications of design parameters, ps, that involves modification
of structural stiffness, ki.

We shall see that the most fundamental for VDM computations is
so-called influence matrix. It groups static responses obtained for unit-
distortions imposed successively on some of the structural elements. In prac-
tice, every column of the matrix is calculated for the adequate compensating
load.

Zieliński [4] distinguished two kinds of the influence matrix. The first one
is the general influence matrix, D̆αi. The type of response grouped in this
matrix is quite arbitral, i.e., depends on what is “in our interest”. The only
requirement is that it should be linearly dependent on ε̂i (in practice, the
response is just a linear combination of the generalized displacements of the
finite element model degrees of freedom). Thus, having this matrix computed
and knowing the distortions (which, for instance, model some structural mod-
ifications), we are able to calculate quickly the updated result (without any
modification of the original structure):

fα =
L

fα +
R

fα =
L

fα +
∑

i

D̆αi ε̂i . (2.1)

Here,
L

fα is the original response to the load (i.e., linear term), while
R

fα is the
response to distortions imposed on some elements and modelling some struc-
tural modifications (i.e., non-linear influence since distortions non-linearly
depend on modifications).

A certain particular case of the general influence matrix will be the second
distinguished type – we shall call it the strain influence matrix, Dij . The
responses grouped in this matrix are strains obtained in some distortion
locations for successive unit-distortions imposed in these locations. Therefore,
this is a square matrix, and all elements on its diagonal (i.e., Dii) are in the
interval [0 , 1]. Knowing this matrix we may calculate the general stresses and
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strains in some members of the structure:

Si =
L

Si +
R

Si = ki
L
εi + ki

∑

j

(

Dij − δij

)

ε̂j , (2.2)

εi =
L
εi +

R
εi =

L
εi +

∑

j

Dij ε̂j . (2.3)

Here, terms
L

Si and L
εi are the linear response to the load, while

R

Si and R
εi

are the residual response for the imposed distortions that may model modi-
fications and thus they are non-linear terms. However, the used above strain
influence matrix tends to play more substantial role, since (as it will be shown
below) it is used to determine these distortions.

3. Distortions in 2D-beam finite elements

Let us consider the well-known finite element of two-dimensional Bernoulli
beam. Solving the eigenvalue problem for the stiffness matrix, K(e)

(6×6), of this
element provide us with six eigenvectors and corresponding six eigenvalues.
Three of the eigenvalues are equal zero, and their eigenvectors describe three
rigid motions of the 2D-beam element: two translations and one small-angle
rotation. Thus, the remaining three eigenstates specify the complete orthog-
onal basis of deformations. These deformations should be assumed as the
distortion states for this element. The form of these deformations and the
compensating loads equivalent to the unit-distortions are presented in Fig. 1.

(a) N̂ = EA

(b) M̂ = EJz (c) M̂ = EJz

Figure 1. Orthogonal deformations (eigenstates) of the 2D-beam element as-
sumed as the states of unit-distortions, and their compensating loads: (a) lon-
gitudinal tension, (b) pure bending, (c) asymmetric bending. (E – the Young
modulus, A, Jz – the area and moment of inertia of cross-section).
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The analogous approach of defining unit-distortion states as orthogonal, non-
rigid eigenstates is proposed for other finite elements.

4. Distortion-based modelling of structural modifications in
statics – the classical VDM

Let p =
[

ps

]

be the vector of structural parameters and p̂ =
[

p̂s

]

– its
modification. We demand that these parameters affect stiffness parameters,
i.e.: ki = ki(p), so after the modification we have: k̂i = ki(p̂). We define the
parameters of stiffness modification as: µi = k̂i/ki. Introducing the vector
of structural modification: λ =

[

λs

]

, where λs = p̂s/ps, we may write that
µi = µi(λ). Now, let us consider the structure modified in some locations and
the original structure but with some distortions imposed in these locations.
We postulate that:

the structure modelled by distortions and the modified structure

are identical in the sense of equality of their fields of general

strains and stresses.

General stresses and strains of the structure modelled by distortions are
expressed by Eqs. (2.2) and (2.3). Thus, we substitute these equations to
the constitutive relationship of the modified structure (under static load):
Si = k̂i εi, and after division by ki 6= 0 and having used the definition for µi,
we obtain:

∑

j

Aij ε̂j =
(

1 − µi(λ)
) L
εi where Aij = δij −

(

1 − µi(λ)
)

Dij . (4.1)

The above system of equations allows us to compute the distortions that
model the modifications.

5. VDM applied to the sensitivity analysis of structures under
static load

We want to determine how the specified response fα is sensitive to struc-
tural modifications. This means that we want to be able to calculate the
following gradient: ∂fα

∂λs
(λ). From Eq. (4.1) it is evident that distortions ε̂i

depend on λ, and so do responses
R

fα (see Eq. (2.1)). Terms
L

fα are the re-
sponses of the original structure (i.e., without any modifications) to the pre-
determined load and thus they don’t depend on λ. Therefore, we have that

∂fα

∂λs
(λ) =

∂
R

fα

∂λs
(λ) =

∑

i

D̆αi
∂ε̂i

∂λs
(λ) . (5.1)
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The above relationship means that to compute the stiffness sensitivity we
need to calculate the gradient of distortions, ∂ε̂i

∂λs
(λ). To find this gradient

we differentiate (4.1) with respect to λs, and as result we get the following
linear system of equations:

∑

j

Aij

∂ε̂j

∂λs
= −

∂µi(λ)

∂λs

[

L
εi +

∑

j

Dij ε̂j(λ)

]

. (5.2)

Here we should notice that before solving the above system of equations, we
need to determine the distortions ε̂i that model the modifications λ. To this
end we must solve the system (4.1). However, let us notice that the governing
matrices for both systems, (4.1) and (5.2), are the same.

6. Distortion-based approach to the modelling of modifica-
tions and sensitivity analysis of structures under dynamic
load – the recently developed Impulse VDM

For dynamic problems we need to introduce the time factor into the VDM.
Thus, we assume that the virtual distortions depend on time. Therefore, the
influence matrix is also time-dependent, and so now it will be 3-dimensional
matrix. The Impulse VDM is based on so-called method of impulse response
function. Thus, for IVDM we have so-called impulse influence matrix, since
its every column is computed (using Newmark’s method) for a unit-distortion
applied as Dirac-like impulse in the initial instant, τ = 0. In practice this
impulse loads we perform in the initial conditions of Newmark’s integrations
of the homogenous equations of motion. This distortion-based approach pro-
posed for structures under predetermined dynamic load allows to model the
modifications of parameters that involve change of stiffness (modelling of
mass modification is not yet implemented).

Thanks to the impulse influence matrices, D̆αi(t) and Dij(t), knowing
distortion functions ε̂i(t) we may compute, respectively: the actual dynamic
response

fα(t) =
L

fα(t) +
R

fα(t) =
L

fα(t) +

t
∑

τ=0

∑

i

D̆αi(t − τ) ε̂i(t) , (6.1)

and time-varying strain functions in distortion locations

εi(t) =
L
εi(t) +

R
εi(t) =

L
εi(t) +

t
∑

τ=0

∑

j

Dij(t − τ) ε̂j(τ) . (6.2)
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However, it should be emphasized here that the strain impulse influence
matrix, Dij(t), is mostly needed when we determine the distortion functions
which model structural modifications λ that involve change of stiffness. To
this end we solve, for every successive instant t, the following system of
equations:

∑

j

A0
ij ε̂j(t) =















(

1 − µi(λ)
)

L
εi(0) for t = 0 ,

(

1 − µi(λ)
)

[

L
εi(t) +

t−1
∑

τ=0

∑

j

Dij(t − τ) ε̂j(τ)
]

for t > 0 ,

(6.3)
where, fortunately, the governing matrix does not depend on t:

A0
ij = δij −

(

1 − µi(λ)
)

Dij(0) , (6.4)

and thus is identical for all the systems. Please, notice that this matrix is in
a way similar with the matrix (4.1)2 used for determining static distortions.

The stiffness sensitivity of dynamic response to modification of structural
parameters consists in determining the following gradient:

∂fα

∂λs
(t,λ) =

∂
R

fα

∂λs
(t,λ) =

t
∑

τ=0

∑

i

D̆αi(t − τ)
∂ε̂i

∂λs
(t,λ) , (6.5)

for which we need to compute the distortion gradient by solving, successively,
for every instant t, the following systems of equations (for every s):

∑

j

A0
ij

∂ε̂j

∂λs

(t) =































−
∂µi(λ)

∂λs

εi(0,λ) for t = 0 ,

−
∂µi(λ)

∂λs

εi(t, λ) +
(

1 − µi(λ)
)

t−1
∑

τ=0

∑

j

Dij(t − τ)
∂ε̂j(τ, λ)

∂λs

for t > 0 .

(6.6)
The right-hand sides of these systems depend on the strain functions (6.2),
and thus they depend on the distortions that are to be first determined
from (6.3). Fortunately, the governing matrix for all the systems (6.6) is
the same, and identical with the governing matrix for the system of equa-
tions (6.3). Thus, we need to perform the LU-decomposition only once.

Algorithms based on the approach briefly presented in this and the pre-
ceding Sections were thoroughly elaborated and described in [4].
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7. Application of IVDM to the damage identification problem
(a simple numerical experiment)

A numerical test for the IVDM sensitivity algorithm was performed re-
garding the problem of damage identification in the simple truss cantilever
shown in Fig. 2. The identification base on the analysis of elastic wave prop-
agation. All elements of the cantilever have the same material and section
properties. It was assumed that the truss is excited by using activators at the
free tip of the cantilever (elements Nos. 39 and 40), generating sine-wave exci-
tations of identical amplitude and opposite phases. Elements Nos. 21 and 22
have sensors ready to read any change in the longitudinal strain of these
bars (Fig. 2).

Figure 2. Truss cantilever.

For the assumed excitation signal the responses (i.e., sensor readings, see
Fig. 3) were calculated numerically, first, for the case of the original structure
(i.e., undamaged), and then for the truss with defects – it was assumed
that several bars of the top and bottom flanges have defects reducing their
structural stiffness. The defects were considered as thin cracks that reduce
the effective area of cross-section but do not significantly affect the mass of
element. They were modelled by assigning to every of the defected elements
material of adequately reduced Young modulus. Values of defect intensities
assumed for the damaged elements are given in Table 1. Localization of the

Table 1. Assumed defects intensities in some elements of the truss.

element No. : e = 10 15 24 27 29 36

change of stiffness : µ
(e)
EA

=
Ê

(e)

E(e) = 0.8 0.7 0.6 0.6 0.7 0.5

defect intensity : 1 − µ
(e)
EA

= 20% 30% 40% 40% 30% 50%
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Response function :  strain in bar No.21
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Figure 3. Forced responses of the truss structure with and without defects
(i.e., “sensor readings” from elements Nos. 21 and 22).
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defects is also marked in Fig. 2, while Fig. 3 presents the driven responses
“read” from both sensors before and after the damage occurred.

In the examined damage identification problem we assumed that the de-
fects are to be sought only in the elements of the both flanges of the truss
cantilever but with the exception of the two elements with activators. Thus,
we were seeking for defects only in the most probable flange elements Nos. 1
to 38 (see Fig. 2). The identification process was based on gradient approach
where the objective function was defined as the squared difference between
the responses obtained, respectively, for the original and damaged structure.
For gradient calculations the IVDM algorithm for stiffness sensitivity of dy-
namically loaded structure was used. Actually, for the sake of comparison
three independent damage identification processes were performed:

1. the identification using “readings” from the sensor situated in the ele-
ment No. 21,

2. the identification using “readings” from the sensor situated in the ele-
ment No. 22,

3. the identification using “readings” from the both sensors simultane-
ously.

In every of the identification processes calculations were performed in
40 iterations. The results are cumulatively presented in Fig. 4. The analy-
sis of those graphs leads to the following observations and straightforward
conclusions:

• Better results were obtained in the identification process using the sen-
sor from the element No. 22 than in the process with the sensor from
the element No. 21. However, because of the symmetry of the struc-
ture, localization of sensors and excitation, it is obvious that contrary
situation shall happen for some other defect distributions.

• Obviously, the best results are from the identification making use of
the readings obtained from both sensors, though localization of defects
found using only one sensor (in the element No. 22) is sufficiently ac-
curate (especially when considering the defects in the top flange).

• Defect identification (even using both sensors) cannot be fully accu-
rate – the intensities of the identified defects are usually lower than the
accurate ones, while some neighbouring elements exhibit false defects
(though usually of comparatively small intensities). Thus, the identified
defects tend to be fuzzy. This happens even for such a simple numerical
experiment. Obviously, these small errors are not very disturbing but
in more complicated tasks much important errors shall happen. This is
because the solution of the identification problem is, generally speak-
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Figure 4. Defects identified in the elements of both flanges of the truss cantilever.
In every position corresponding to an element from the top or bottom flange of the
truss cantilever defect intensities identified independently in the three processes
of identification are shown. The “actual” values of numerically-modelled defects
are presented as well.
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Figure 5. Histogram of the defect identification process (the identification using
both sensors).
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Figure 6. Objective function and its gradient computed in successive iterations
of the damage identification process. Here, three objective functions for the three
independent identification processes are presented, namely: the process using the
sensor from the element No. 21, the process using the sensor from the element
No. 22, and the process using the both sensors simultaneously. The presented
graphs of the gradient of objective function was obtained from the process where
both sensors were used. Values in the graphs are scaled by the corresponding
maximal value obtained in the starting iteration.
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ing, not unique; some systematic errors will play an important role as
well (for example, an imperfect FE model, an inappropriate excitation
signal, etc.).

• Small defects that cause little loss of stiffness might be difficult to
identify especially in the presence of other bigger defects. Moreover,
they can be hardly distinguished from the mentioned above fuzziness
of identification results.

Figure 5 presents a histogram of the defect identification process where
readings from both sensors were used, while Fig. 6 shows normalized plots
of the corresponding objective functions obtained for all three identification
processes. Figure 6 depicts also the gradient components of objective func-
tion obtained in successive iterations for the identification process with two
sensors.
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